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Introduction 

In biology, sequence motifs are short sequence patterns, usually with fixed lengths, that represent 

many features of DNA, RNA, and protein molecules. Sequence motifs can represent transcription factor 

binding sites for DNA, splice junctions for RNA, and binding domains for proteins. Thus, discovering 

sequence motifs can lead to a better understanding of transcriptional regulation, mRNA splicing, and the 

formation of protein complexes. Furthermore, protein motifs can represent the active sites of enzymes or 

regions involved in protein structure and stability.  

Motif discovery is an important computational problem because it allows the discovery of patterns 

in biological sequences in order to better understand the structure and function of the molecules the 

sequences represent. Especially, identifying regulatory elements, especially the binding sites in DNA for 

transcription factor, is important to understand the mechanisms that regulate gene expression. These 

DNA motif patterns are usually fairly short (5~20 base pairs long) and is known to recur in different 

genes or several times within a gene [1]. A DNA sequence can have zero, one, or multiple copies of a 

motif. In addition to these more common forms DNA motifs, there are also palindromic motifs 

(subsequence that is exactly the same as its own reverse complement) and gapped motifs (two smaller 

conserved sites separated by a gap) [2]. The high diversity and variability of motifs make them very 

difficult to identify.  

A large number of algorithms for finding DNA motifs have been developed. These algorithms 

mostly detect overrepresented motifs and conserved motifs that might be good candidates for being 

transcription factor binding sites. Algorithms that detect overrepresented motifs deduce motifs by 

considering the regulatory region (promoter) of several co-regulated or co-expressed genes. 

Co-regulated genes are known to share some similarities in their regulatory mechanism, possibly at 

transcriptional level, so their promoter regions might contain some common motifs that are binding sites 

for transcription factors. Thus, the way to detect these regulatory elements is to search for statistically 

overrepresented motifs in the promoter region of such a set of co-expressed genes. However, algorithms 

that detect overrepresented motifs perform not as well in higher organisms. To overcome this, some 

algorithms consider conserved motifs from orthologous species. Since selective pressure causes 

functional sequences to evolve slower than non-functional sequences, well-conserved sites represent 

possible candidates for DNA motifs. Recent algorithms have also combined the two approaches to 

achieve improvement in motif finding. In this report, we will review a few of the major recent 

developments in DNA motif finding algorithms.  
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General Techniques for Motif Discovery 

Most motif finding algorithms fall into two major groups based on the combinatorial approach used: 

(1) word-based (string-based) method, represented by regular expressions (RE), or (2) probabilistic 

sequence models based on position weight matrices (PWM) [3]. The two methods have their own 

strengths and weaknesses.  

The word-based method relies on exhaustively counting and comparing oligonucleotide frequencies, 

using regular expressions [4]. Regular expressions, often used in computer science, provide a concise 

and flexible means to “match” strings of text, which in this case are DNA sequence patterns. For 

example, a possible regular expression may be: “T-A-C-N(2,4)-G-T-A.” This means that the RE matches 

any DNA sequences that begin with TAC and end with GTA, with a gap of length two to four in between 

that can be anything. The word-based method searches all possible regular expressions exhaustively to 

identify the REs whose match are most over-represented. The advantage of the word-based method is 

that it guarantees global optimum, since it does an exhaustive search. However, this also means that they 

are only suitable for short motifs. Also, although this method can be fast when implemented with 

suitable data structures, it is usually computationally expensive. This method is a good choice for 

finding motifs where all instances are identical. However, for typical transcription factor motifs that 

often have several weakly constrained positions, the word-based method can suffer [5].  

The probabilistic approach involves representing the motif with a position weight matrix (PWM) 

[6]. A PWM defines the probability of each letter in the alphabet occurring at a specific position with an 

n by m matrix. n is the number of letters in the sequence (four for DNA) and m is the number of 

positions in the motif. The entry in row i and column j of the matrix is the probability of a letter i 

occurring at position j in the motif, represented by: 

,i jP i n j m   

This model assumes that each position in the motif is statistically independent of the others. Thus, the 

probability of a sequence is just the product of the corresponding entries in the PWM. For example, the 

probability of the sequence “TACGTA” is just: 

,1 ,2 ,3 ,4 ,5 ,6Pr(" ") T A C G T AP P PTAC PGT P PA        

The probabilistic approach searches the space of PWMs for motifs that maximize an objective function 

that is usually given by some sort of log-likelihood ratio (LLR): 
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fi is the overall probability of letter i in the sequence to be scanned for occurrences of the motif. The 

advantage for probabilistic approaches is that, compared with word-based methods, can have each letter 

“match” a particular motif position to varying degrees, rather than just match or no match. Many of the 
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algorithms developed from probabilistic approaches are designed to find longer or more general motifs. 

However, these algorithms are not guaranteed to find globally optimal solutions, unlike word-based 

methods, since they employ some form of local search (such as Gibbs sampling, expectation 

maximization, or greedy algorithms) that may not converge to the global optimal solution.  

 

 

Figure 1: The relationship between the motif sites, and RE, and a PWM. Nine example motifs are shown, with the 

corresponding RE and PWM, as well as the LOGO representation of the motif (Bailey, 2008).  

 

Some literatures also categorize the motif finding algorithms into four classes based on the input 

sequences: (1) a “focused” approach: assemble a small set of sequences and search for over-represented 

patterns in the sequences, (2) a related “focused discriminative” approach: assemble two sets of 

sequences and look for patterns relatively over-represented in one of the input sets [7]. (3) a 

“phylogenetic” approach using sequence conservation information about the sequences in a single input 

set [8]. (4) a “whole-genome” approach looking for over-represented, conserved patterns in multiple 
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alignments of the genomes of two or more species [9]. In this report, the “focused” approach of 

co-regulated genes will be emphasized  

 

 

Word-based Algorithms 

 The motif finding algorithm Oligo-Analysis developed by van Helden et al. is based on the 

word-based approach [4]. This algorithm is conceptually very simple. It detects statistically significant 

motifs by counting the number of occurrences of each word or dyad and comparing these with 

expectation. Thus, this algorithm is exhaustive. However, it is limited to detecting only relatively simple 

patterns that include short motifs with highly conserved sequences. Later, van Helden extended this 

method to include spaced gap motifs (Dyad-Analysis) [10]. The major disadvantages of these algorithms 

are that no variations are allowed within an oligonucleotide.  

Tompa et al. developed another algorithm with an exact word-based method to find short motifs in 

DNA sequences [11]. The algorithm takes into account both the absolute number of occurrences and the 

background distribution and creates a table that, for each length-k sequence s, records the number Ns of 

sequences containing an occurrence of s, where an occurrence allows for a small-fixed number c of 

substitution residues in s. Then, a reasonable measure of s as a motif would be based on how likely it is 

to have Ns occurrences if the sequences were drawn at random according to the background distribution. 

Now, let X be a single random sequence of the specified length L, with residues drawn randomly and 

independently from the background distribution. Suppose that ps is the probability that X contains at 

least one occurrence of the length-k sequence s, allowing for c substitutions. We assume that N length-L 

random sequences of X are independent. Thus, the expected number of containing at least one 

occurrence of s among the N random sequence is: 

sNp  

The standard deviation is: 

(1 )s sNp p  

Thus, the z-score is: 
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The algorithm uses an exhaustive search to finds motifs with the greatest z-scores. Tompa et al. built 

upon this to develop the algorithm YMF (Yeast Motif Finder) to produce the motifs with greatest 

z-scores. This approach allowed variations within the oligonucleotide and made more accurate 

predictions.  

 Brazma et al. also used a word-based approach to develop a motif finding algorithm that looks for 
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occurrences of regular expression-type patterns [12]. Many other algorithms were also developed that 

are similar to these approaches, combining word-based methods with graph-theory methods. For 

example, Sagot et al. introduced a word-based approach for motif finding that is based on the 

representation of a set of sequences with a suffix tree [13]. These implementations increased the 

computational efficiency of the algorithm, but have other drawbacks like more constraints on the target 

motifs to be searched.  

 

 

Probabilistic Algorithms 

 Most probabilistic motif finding algorithms apply statistical techniques such as expectation 

maximization (EM) and Gibbs sampling algorithms. Gibbs sampling algorithms are used more 

extensively among the probabilistic approaches.  

 The EM algorithm iteratively maximizes the expected log likelihood using the Position Weight 

Matrix (PWM). The MEME algorithm developed by Bailey and Elkan is probably the most popular EM 

based algorithm for identifying motifs in unaligned sequences [14, 15]. MEME incorporated three ideas 

for discovering motifs: (1) subsequences that actually occur in the sequences are used as starting points 

for the EM algorithm to increase the probability of finding globally optimum motifs, (2) assumption that 

each sequence contains exactly one occurrence of the shared motif is removed, (3) a method for 

probabilistically erasing shared motifs after they are found is incorporated so that several distinct motifs 

can be found in the same set of sequences. EM is a gradient descent method, so it cannot guarantee a 

global optimum. However, this means that the algorithm always converges in a predictable, relatively 

small number of iterations.  

 The Gibbs sampling method was originally developed by Lawrence et al [16]. The Gibbs sampler 

is a Markov Chain Monte Carlo (MCMC) approach for obtaining a sequence of radon samples from 

multivariate probability distribution. Markov chain means that the results from every step depend only 

on the results of the preceding one, like in EM. Monte Carlo means that the way to select the next step is 

not deterministic but rather based on random sampling. The MCMC also uses a probability matrix, and 

iterates until an optimal alignment is found when the ratio of motif probability to the background 

probability reaches a maximum.  

More formally, we assume that we are given a set of N sequences S1,…,SN, and we seek within each 

sequence mutually similar segments of specified width W. The algorithm proceeds through iterations of 

two steps, with each step maintaining an evolving data structure. The first is the “pattern description”, in 

the form of a probabilistic model of residue frequencies for each position i from 1 to W, and consisting 

of the variables qi,1,…,qi,4 indexed by W positions and 4 possible residues (for DNA). There is also a 

“background description”, p1,…p4 with which residues occur in sites not described by the pattern. The 

second data structure is for alignment, which has a set of positions ak for k from 1 to N, for the common 
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pattern within the sequences. The algorithm proceeds through multiple iterations that execute the two 

steps: a predictive update step and a sampling step. For the predictive update step, one of the N 

sequences, z, is chosen at random. The pattern description qi,j and background frequencies pj are then 

calculated from the current positions ak in all sequences excluding z. For the sampling step, every 

possible segment of width W within sequence z is considered as possible instance of the pattern. The 

probabilities Qx of generating each segment x according to the current pattern probabilities qi,j are 

calculated as well as the probabilities Px of generating these segments by the background probabilities pj. 

The weight Ax = Qx/Px is assigned to segment x and a random segment is selected using these weights. 

Its position then becomes the new az. This iterative procedure allows accurate determination of motifs 

since the more accurate the pattern description constructed in step 1, the more accurate determination of 

its location in step 2, and this can converge to very accurate determination of motifs.  

 There are several methods based on Gibbs sampling approach. The following are three examples: 

(1) Based on the Gibbs sampling approach, Roth et al. developed the motif finding algorithm AlignACE 

(Aligns Nucleic Acid Conserved Elements) [17]. This algorithm returns a series of motifs as weight 

matrices that are overrepresented in the input set of DNA sequences. AlignACE uses the MAP 

(maximum a priori log-likelihood) score to judge different motifs sampled, which gauges the degree 

of overrepresentation.  

(2) Thijs et al. developed another motif finding algorithm, MotifSampler, which is also a modification 

of the Gibbs sampling algorithm [18]. MotifSampler uses a probability distribution to estimate the 

number of copies of the motif in a sequence and incorporates a higher-order Markov-chain 

background model.  

(3) Another approach using the Gibbs sampling strategy, Liu et al. developed the motif finding 

algorithm, BioProspector [19]. BioProspector uses the promoter regions of co-regulated genes. It 

also uses zero to third-order Markov background models, and the significance of each motif is 

judged based on a motif score distribution estimated by a Monte Carlo method.  

 

 

Other Algorithms and Applications 

 There are other algorithms, for example, that combine the word-based methods and probabilistic 

approaches, like the MDScan algorithm. The TAMO algorithm runs multiple motif discovery algorithms 

(MEME, AlignACE and MDscan) and combines the results [20]. Other approaches are based on other 

machine learning techniques, neural networks, and clustering algorithms. Algorithms based on 

phylogenetic foot-printing has the advantage of the co-regulated gene approach is that co-regulated 

methods require a way for identifying co-regulated genes; phylogenetic foot-printing approach is 

possible to identify motifs specific to even a single gene as long as they are sufficiently conserved across 

the many orthologous sequence considered. There are also algorithms that are based on promoter 
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sequences of co-regulated genes and phylogenetic foot-printing.  

 These algorithms are often packaged into user-friendly interfaces, either on web servers or 

toolboxes. For example, the user-friendly interface, Toolbox of Motif Discovery (Tmod), integrates 12 

widely used motif discovery programs: MDscan, BioProspector, AlignACE, Gibbs Motif Sampler, 

MEME, CONSENSUS, MotifRegressor, GLAM, MotifSampler, SeSiMCMC, Weeder and YMF [21].  

 

 

Discussion 

 There are a large number of motifs finding algorithms are available that it is impossible to provide a 

comprehensive report. Each algorithm has its own advantages and disadvantages. The two main 

approaches for these motifs finding algorithms are word-based method and probabilistic approach. The 

main advantages of word-based method are that they are easy for us to visualize and for computers to 

search for the motif. It is also easier to compute the statistical significance of a motif divined as a regular 

expression. On the other hand, PWMs allow for a more flexible description of motifs because each letter 

can match a particular motif position to varying degree rather than simply matching or not matching. 

The main disadvantage of PWMs for motif discovery is that they are far more difficult for computer 

algorithms to search for. However, it is difficult to assess the performance and compare directly these 

algorithms. This is because each individual tool may do better on one type of data but do worse on other 

types of data. Also, since we still do not have a complete understanding of the biology of regulatory 

mechanism, it is difficult to evaluate the accuracy of these algorithms.  

 A few of the main algorithms, which are described above, are summarized below.  

 

 

 

Table 1: Summary of the algorithms used for DNA motif finding 

 

PWM-based algorithms Web Servers 

MEME http://meme.nbcr.net 

Gibbs http://bayesweb.wadsworth.org/gibbs/gibbs.html 

AlignACE http://atlas.med.harvard.edu 

MotifSampler http://www.esat.kuleuven.ac.be/∼dna/BioI/Software.html 

BioProspector http://seqmotifs.stanford.edu 

MDScan http://seqmotifs.stanford.edu 
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RE-based algorithms Web Servers 

Oligo/Dyad-Analysis http://rsat.scmbb.ulb.ac.be/rsat/ 

YMF http://wingless.cs.washington.edu/YMF 

Weeder http://www.pesolelab.it 

 

 

 

Conclusions 

 Transcription factors bind to DNA motifs and modulate gene expression. Thus, identification of 

motifs in the promoter region of genes will help understand the regulation of gene expression. This 

problem has been of great interesting to computer scientists and biologists to use computational methods 

for motif finding. This provides a simple and efficient method to identify motifs without having to do 

time-consuming experiments.  

 There are myriads of algorithms available for motif finding, each with their advantage and 

disadvantages. Diverse approaches, including combinatorial enumeration, probabilistic modeling, 

mathematical programming, neural networks, and genetic algorithms, have been used. It is difficult to 

assess which motif finding tool is the best, since we do not have a clear understanding of the biology of 

regulatory mechanisms, so we lack an absolute standard against which to measure the correctness of 

these approaches. Thus, when using motif finding tools, it is important to use a few complementary tools 

in combination rather than relying on a single one.  

 Motif finding algorithms, combined with high-throughput transcriptional regulations microarray 

assays, will allow us to gain further understanding of transcription regulation and gene expression. 
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